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ABSTRACT
In this paper we present a full proof of the result which was announced
at the International Congress of Mathematicians in Kyoto (August, 1990):
Any associative Pl-algebra over a field of characteristic p satisfies the stan-
dard identity.

THEOREM: Every associative Pl-algebra over a field of characteristic p > 0 sat-
isfies the identity

(1) Z To(1) " Ta(n) =0

o€S(n)

for some n where (S(n) is the symmetric group of order n).

In the sequel, we shall refer to (1) as the symmetric identity of degree n.
This theorem implies a positive answer for I.B. Volichenko’s conjecture posed in
1981:

COROLLARY: Any (associative) Pl-algebra over a field of characteristic p > 0
satisfles the standard identity of suitable degree.

Indeed, let A be a Pl-algebra over a field of characteristic p > 0; G the Grass-

man algebra over F generated by the elements ey, ez, ..., satisfying the relations

* The final version of this paper was written while the author was visiting Bar-Ilan
University.
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eiej = eje; for all ¢, 7. By Regev’s theorem the algebra A ®f G is a Pl-algebra;
therefore, A @ p G will satisfy (1) for some n. Making in (1) the substitution

z; = a; ® ¢4,

where a; € A, we get the equality

> (=1)%a50) Go(n) | ® 1760 =0,
a€S(n)

which implies

Y (~Dagytomy =0

o€S(n)

for all ay,...,a, € A, i.e. the algebra A satisfies the standard identity of degree

n.

§1. Preliminaries

Since the symmetric identities are multilinear, we may assume in the proof of
the theorem that the basic field F is infinite with ch £ = p > 0. Let B be the

commutative algebra over F, generated by the elements by, b2, ... satisfying the
relations
(2) ¥=0 i=12....

LEMMA 1: An algebra A over an infinite field F satisfies the identity (1) if and
only if the algebra A @ B satisfies the identity z" = 0.

Proof: An arbitary element £ € A ® r B can be written in the form
T = Z a; ® ¢,
i

where a; € A, ¢; € B and the elements ¢; are the products of the b;. (2) implies

that ¢? = 0 for all ¢. Therefore z can be written as a linear combination of

}: Qiygyy o Qiggn ®c

o€S(n)

elements of the form

which equals 0, because the algebra A satisfies the identity (1).
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The converse assertion is trivial because (1) is the full linearisation of the

identity =™ = 0. |

Since B is a commutative non-nilpotent algebra, the multilinear identities of
the algebras A, A ®p B are the same. Thus the main theorem of the paper
asserts that any Pl-algebra over a field of characteristic p > 0 satisfies the same

multilinear identities as some nil-algebra of bounded index.

LEMMA 2: Ifan algebra A satisfies the symmetric identity then an algebra M,(A)

also satisfies the symmetric identity of suitable degree.

Proof: By Lemma 1 it is sufficent to prove that the algebra M,,(A ® B) satisfies
the identity ™ = 0 for some N.

Let £ = Y cijeij € M,,(A® B), where ¢;; € AQ B. By Lemma 1 A® B is
a nil-algebra of a bounded index; therefore, the subalgebra C generated by the
elements ¢;; will be nilpotent. Let N; be the index of nilpotency of C; then
Nt = 0. Thus taking N > N; to be the index of nilpotency of an n?-generated
free algebra of the variety Var(A® B), the algebra M,,(A® B) satisfies the identity
V=01

LEMMA 3: An associative algebra satisfying the Engel identity

(3) [z,y,...,4] =0

of degree m satisfies the symmetric identity of suitable degree.

Proof: We may assume that m = p¥. It is easy to verify that for any A € F

Az +y)™ = y™ + Az, y,. ..,y + No(z,y)
i.e. the identity (3) is a partial linearization of the identity z™ = 0. Therefore,
by linearizing (3) we get an identity of the form (1). ]

LEMMA 4: Let IaA. If I and A/I both satisfy symmetric identities, then A also

satisfies a symmetric identity.

Proof: By Lemma 1 the algebras I® B, (A/I)}® B satisfy the identities z™t = 0,
z™? = 0 respectively. Thus A ® B satisfies the identity z™1*"2 = 0. n
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§2. The proof of the main theorem

Since as any Pl-algebra can be embedded into a Pl-algebra with unit, it is suffi-
cient to prove the main theorem for Pl-algebras with unit.

Let F(z) be the free associative algebra with unit generated by a countable set
X, and let A be a Pl-algebra with unit. Let F;, denote the n-generated relatively
free algebra of the variety Var(A) with unit. In [1] it was proved that there exist

finite-dimensional classical algebras C,, such that
(4) Var(F,) = Var(Cy).

(A finite-dimensional algebra is called classical if C = P(C) + Rad C, P(C)N
Rad € = 0, and P(C) is a direct product of full matrix algebras over the base
field F.) We fix the finite-dimensional classical algebras satisfying (4).

Remark: If for some n the algebra C, satisfies an identity f(zi,...,zm) =0,
where m < n, then the algebra A also satisfies this identity.
Indeed, let T be the ideal of identities of the algebra A, I the ideal of identities

of the algebra F,,. Since m < n we have the inclusions
f(]:l,...,.’l?m) eI"ﬂF(xl,...,zn) :FﬂF(l‘l,...,:tn) cr.

If A is a proper variety of associative algebras over F, then we denote by a(A)
the maximal integer « satisfying the condition M,(F) € A. The number a(A) is
called the matrix complexity of the variety A.

A nontrivial identity of the form

Za(i)zi‘ylli’yz gyttt =0,

(1)
where a(;) € F, is said to be an identity of algebraic form of order m. We denote
by B(A) the minimal order of an identity of the algebraic form is satisfied by all
the algebras of A. If some algebra of A does not satisfy any identity of algebraic
form then we let f(A) = oo.

The ordered pair («(A), B(A)) is called the type of the variety .A. We order

the types lexicographically: (a1,81) < (a2,f2) if either a; < a3 or a3 = ay,

B < Ba.
We shall prove the theorem by induction on the type Var(A).
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1. BASE FOR THE INDUCTION. f(Var(4)) =1

In this case the algebra A satisfies a nontrivial identity of the form

n
Zak[y,z,...,z]z"_k.
k=0

Hence, since A is an algebra with unit, we obtain (substituting z + 1 for z and
taking the nontrivial homogeneous component of minimal degree) that the al-
gebra A satisfies an Engel identity. Then by Lemma 3 the algebra A satisfies a

symmetric identity of suitable degree.

2. INDUCTIVE HYPOTHESIS.
Suppose that for every variety A of type less than the type of the variety
Var(A) that all the algebras of A satisfy a symmetric identity of suitable degree.

3. Let a = a(Var(A)), B = B(Var(A)). We shall assume that 3 > 1.

The algebras C,, may be represented in a form
Cr» =P(Cy) + Rad Cy,

where P(C,,) is the semisimple part of the algebra C,,, P(C,)NRad C,, = 0. We

have the decomposition
PC)=CPpCVeo...0C5M,

where C ~ My (F) if ¢ > 0, and the algebra € is a direct sum of the full
matrix algebras M;(F), j < a.

Let eg,i) be the unit of the algebra CY). We denote by I, the ideal of the algebra
C, generated by all the elements of the form eg)ces.j), where j #1,c€ Cy,. It is
obvious that I, C Rad C,,.

Now we will prove that if there exists a natural number ¢ such that for each
n the algebra I, satisfies the symmetric identity of degree ¢, then the algebra A
satisfies a symmetric identity of suitable degree.

We suppose first that & = 1. Consider the algebra C,, where n = 4q. The
algebra Cp, /I, can be represented as a direct sum of local algebras, therefore it

satisfies the identity

9(z,y,2,t) = 2z[z,y,...,ylt =0
N —

m
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for some m. By Engel’s theorem C,, satisifes the identity

(5) Z 9o(1) """ 9o(q) =0

o€S(q)

where ¢; = g{zi, ¥i, zi, ;). Since the left side of the identity (5) depends on4g =n
variables, by the remark the algebra A satisfies the identity (5). It follows that
there exist an ideal I of the algebra A such that the algebra A/I satisfies Engel’s
identity and the algebra I satisfies the symmetric identity of degree ¢. Applying
Lemmas 3 and 4, we conclude that the algebra A satisfies a symmetric identity
of suitable degree.

We suppose now that « > 1. For each n the algebra C,,/I,, can be represented

as a direct sum of the algebras of the form
CH = elICeld) /I, NP Crel).
If + > 0 then we have the isomorphism
CY = Mo(DY),
where Dg) are suitable algebras. Consider
C = Mo(F(z))/T(Ma(F(z))),

where T is the ideal of identities of the algebra A, and I'(M,(F(x))) is the
ideal of M,(F(z)) generated by all the elements of a form f(ay,...,am) where
f(z1,...,zm) €T, a; € My(F(z)). It is obvious that for all n and ¢ > 0 the
algebra CY) satisfies all the identities of the algebra C.

We have C' = M, (D) for some algebra D. Since C'is a PI-algebra then D is also
a Pl-algebra. It is easy to see that a(Var(D)) = 1 < . Thus by the inductive
hypothesis the algebra D satisfies a symmetric identity of suitable degree. Then
by Lemma 2 the algebra C also satisfies a symmetric identity of suitable degree
m.

So we have proved that there exists a natural number m such that for any n
and any ¢ > 0 the algebra CY) satisfies a symmetric identity of degree m.

We fix an arbitrary polynomial u(zy,...,z,) € F(z) satisfying the following
properties:

1. u = 0 is an identity of the algebras M;(F) for j < a;
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2. for each k the algebra M,(F) does not satisfy the identity u* = 0.
Let n = (m + r + 3)q. Since the algebra M;(F) for j < 2 satisfies the identity
u = 0, then for some k the algebra C satisfies the identity u¥ = 0. This and
what was proved above imply that the algebra C, /I, satisfies the identity
(6)
9(z, 6,0, 21, .., Zmy Y1,y Yr) = 2 Z xa(l)n'xa(m)t(u(yl,...,y,)k)v =0.
g€S(m)

Then the algebra C,, satisfies the identity

(7) 2 9o(1) """ Ga(m) = 0

o€5(g)

where

gi = gi(z(i)at(i)’v(i)axgi), .. ,151?, yii)a ey yﬁl))

Since the left side of the identity (7) depends on (m +r 4 3)q = n variables, then
by the remark the algebra A also satisfies the identity (7). It follows that there
exists an ideal I of the algebra A such that the algebra I satisfies a symmetric
identity of degree ¢ and the algebras A/I satisfies the identity (6).

Let A be the variety of algebras satisfying the identity u* = 0. By construction
of the polynomial u we have the inequality a(A) < @. Thus by the inductive
hypothesis the algebras of the variety A satisfy a symmetric identity of suitable
degree, i.e. the identity u* = 0 implies a symmetric identity of suitable degree.
Hence the identity (6) also implies a symmetric identity. Thus we have proved
that the algebra A/I satisfies a symmetric identity. Finally, applying Lemma 4
we conclude that the algebra A satisfies a symmetric identity.

4. We fix an arbitrary central polynomial h(z1,...,z,) of the algebra M,. Let
n =r + 2. Since the algebra C./Rad C, satisfies the identity [h,y] = 0 and the
ideal Rad C, is nilpotent, the algebra C, satisfies for some k every identity of
the form

(8) 2™ [h(21,. .., Te), yl2™ 2™ [R(T, L T Y] =0

where m; > 0. The left side of this identity depends on r + 2 = n variables;
therefore, by the remark the identity (8) holds in the algebra A and in the
algebras C,, for all n.

In this part of the proof we get some generalized identities of C, which will be

needed later.
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Suppose that the set of units {egf), i > 1} contains 2k + 1 distinct ele-
ments ey,...,ek+1- Since h(zq,...,2,) is a central polynomial of M,(F), for

all A1,...,A2k+1 € F we can choose the elements ay,...,a, € P(Cy) such that

2k+1

h(ai,...,ar) = Z Aie;.
=1

Make the following substitution in the identity (8)

2k
zi=ay; Y= ZeiyieH-la yi€Ch; z=1
i=1
We obtain the equality
2k
H(/\i — Ait1)e1yi€xya - - - eakYorezr41 = 0.
i=1

Since F is an infinite field, we can choose the elements A; such that A\; # A; if
i # j. Thus for all distinct units e1,...,e41 € {es.‘) f i > 1} the algebra C,
satisfies the generalized identity

9) e1y1€e2ys - - - €2xYak€2k+1 = 0.

Let e; be an arbitrary unit belonging to the set {es.i) [ i>20},eg=1—¢.1If
e1 # ¢? then we can choose the elements a; € P(n) such that h(ay,...,ar) = €.
Ife = es.o) the elements a; can be chosen so that h(a;,...,ar) = e2. Make the
substitution into the identity (8): z; = ai, y = e1yez, z = z, where y,2 € Cy.
We obtain the generalized identity of the algebra C,,

(10) z2™eryes -2t e ye 2™ = 0

for all m; > 0.

5. Now we prove the following statement:

If there ezists a natural number N such that for any n and i the algebra
eS,i)I,,eEf) satisfies a symmetric identity of degree N, then for all n the algebra

I, satisfies the symmetric identity

(11) D Vo) Yolg) =0
o€S(q)
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where
q=((2k)*(2k +1) + 1)N + 1.

Indeed, since the identity (11) is multilinear then it is sufficient to verify the

identity for the elements
Yi = ek, Yiey;,
where ey, e;; € {eSf) l 120}, ej#epifj#7, yi € In.

It follows from the identity (9) that if the set 7 = {ex,,es,,...,ex,, €, } contains
more than 2k + 1 elements (i.e., if |7 N {es,i) | i > 1}{ > 2k + 1) then the left side
of the identity (11) equals zero for the substitution we have made.

An element y; is called mixed if k; # ¢;. If the number of a mixed element is
greater than (2k)?(2k + 1) then among the elements y; there exist (2k + 1) mixed
elements y;,,...,Yiy,, such that k;, =k; , ¢;; =¢;, forallj=1,2,...,2k +1.
Then the left side of (11), for the substitution we have made, can be represented
as a linear combination of expressions which are the linearizations of the left sides
of the identities of the form (10), where e; = eg; , 2 =1 — ey, i.e. the left side
of (11) again equals zero.

So we may assume that the number of the mixed elements < (2k)*(2k + 1). In
the case the left side of the identity (12) for the substitution we have made can
be represented as a linear combination of the expressions of the form
(12) u Z Yioy " Yiomy V>

s€S(N)
where y;; are nonmixed elements. The expression (12) equals zero because the
nonmixed elements belong to the subalgebras @, e P Il which satisfies the
symmetric identity of degree N. The statement is—proved.

Let us continue the proof of the main theorem. Consider the variety A gen-
erated by all the algebras eEf)I,,eS,"), where n = 1,2,..., ¢ = 1,2,...,s(n). It
remains to prove that all the algebras belonging to A satisfy a symmetric iden-
tity of suitable degree.

Since A C Var A then a(A) < a = a(Var(4)), (A) < B = p(Var(A));
therefore, by the inductive hypothesis it is sufficient to prove that 3(A) < 6.

6. We suppose first that 8 # oo. Then the algebra A satisfies a nontrivial
identity of the form
(13) Z a(i)zi‘ylzi’yz -v-zi"“yﬂ_lzi" yﬁz'"’"‘l =0.

()=(i1,...,ig)
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We show that for all u,: the algebra eg)Ineg ) satisfies the identity d,, = 0, where

gm(z,yl,_ .. ,yﬂ—l) = Z O’(,‘)Zilyl .. 'zi""yﬁ_lzi"+‘.

()

ig=m
Indeed, let e; = e Tt follows from the definition of the ideal I, that
erl,e; = ¢CreaCrey, where e; =1 —e;.

Make the following substitution into the identity (13):
z2=MXes+d, whered€ejleq, A€F;
y; =d;, whered; cejl,e, i=1,...,0-2
ys, =c€1, Yyg =2, wherec; € e;Crez, ¢ € e2Cye;.
We get the result:

D A"gm(d,ds, .., dg-2,C1Cs) = 0.

Since F is an infinite field, the equality
gm(d,d1, ce ,d52C102) =0

follows for all m.

An arbitrary element dg_; € e11,e; can be represented as a linear combination
of the elements of the form cc', where ¢ € e;cne2, ¢ € e2Ceq. Therefore we get
the equality

g,,.(d,dl,. . ,dﬂ_l) =0

for all d,d; € e;Crey, i.e. the algebra e;I,,e; satisfies the identity g, = 0.

Since the identity (13) is nontrivial, then for some m the identity g, = 0 is a
nontrivial identity of algebraic form of the order 8 — 1. Thus 8(A) < 5.

7. We suppose finally that # = co. We prove in that case that every algebra
belonging to the variety A satisfies some identity of the algebraic form of order
k (k is the same number as in the formula (8)), i.e. J(A) <k < B.

Let ¢; = es,i), e; = 1 — e. Choose elements ay,...,a, € C, such that either
h{(a1,...,ar) = € or h(ay,...,a,) = ez (cf. item 4). We make the following
substitution into the identity (8) for mg = my = -+ = mar = 0, ma2i_1 = n;:

z; = ai, y =+, where ¥ € 1Crez, § € €2Cney, 2 € €1Crey. fmy =0
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we multiply the result by e; from the left. As a result we get the following
generalized identity of Cp, :

(14) GGG G = 0

for every integer n; > 0 and any § € €;Cres, § € €2Che1, 2 € 1C 6.

Now we shall describe a process of transforming of generalized identities which
is similar to the process of linearization.

Suppose the polynomial f = f(y, z,21,...,,) is homogeneous with respect to
y, deg, f = p (the variable z may appear in the polynomial f vacuously). Then

f can be written in the form

f= Z Q) Ur1YU2Y * UpYUpt)
(u)
where u; are the words on the variables x;,...,z5, and a(,) € F. For any vector

n = (ni,...,n,) of non-negative integers, we define the polynomials

{(n) = Z ayu12M yugz™?y 2 yuyga,
(u)

r(n) = Za(u)ulyz"‘uzyznz oy EYU
(u)

Consider an associative algebra D over the field F' which contains fixed subsets
My, M., M,,,...,M,, satisfying the properties:

1. M, is a linear F' subspace.

2. Either M, M, C My, or MyM. C M,.

We assume that for any vector n = (n,...,n,) and for any elements y € My,
2 € M,, z; € M., the following equality holds in D : g(n) = 0, where g(n) =4£(n)
if M,M, C My, g(n) =r(n)if MyM. C M,.

Since M, is a linear space over an infinite field F' then for any y1,y € My,

z € M,, z; € M,, and for any integer vector n the following equality holds in D;

(13) Yo =0,
where

gi(n) = Za(u)ulz"’y coug 2V yuiz yrui 2T Y w2 YU g)
(u)
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if g() = £(n),

gi(n) = Za(u)ulyz"‘ R TRERE T AL VT A TIT AR AL TENRT 1742} RRRE VIR TE-ALL VIS
(u)

if g(n) = 2(n). This equality is a partial linearization of g(n) with respect to y.

(0,...,0,1,()...0)
i

We substitute into the equality (15) y; = 2/y; if M, M, C M,, y1 =y 2’ if
MM, C M,. We get the result

We denote by ¢; the vector

(16) Y ai(n +i5e:) =0,
i=1

which is true for all n, ;.

Consider the polynomial

p—-1 [
a7 A@)=3.(-1" Y. Y a(E 4T 4 E, + (k- v)E).

z<H1 < <Gy S i=1

This polynomial is a linear combination of polynomials of type (16). Thus the
equality h(%) = 0 holds in D for every 7.

Changing the order of summation in (17) we obtain
h(m) =) hi(n),
i=1
where
p—1
h(R) =D (-1 ). @(mH e+t e F(u—-v)Er).
v=0 <1 <o Sh

It is easy to see that h;(n) is trivial for i > 2. It is obvious also that if the
initial polynomial f is nontrivial then the polynomial hi(7) is nontrivial also.
We let

Ly () = h(0).
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Now we apply the described process for the case D = C,, My = €;Creg,
M; = e2Cher, M, = e1Cher, f = (7§)F. By what was proved above for all
7,7; € My, §,§: € My, 2 € M,, the following equality holds in C\,.

L (Lygui(--- Ly (Lyg, (- (L35,(f)...)=0.

The left-hand side of this equality is a nontrivial polynomial of the form
Z ﬂ(i)zil§1§1zi’gzgz . zikl—;kﬁkzik“ .
)

In particular, this polynomial is linear with respect to the variables 7;, §;. Since
MzMj = e11,e, it follows that the algebra e I e; satisfies the identity

(18) Y Bayz vzt Ayt =0
@

which is a nontrivial identity of algebraic form of order k. Since the coefficients
B(iy do not depend on n and e; then all the algebras of the variety A satisfy the
identity (18). The Theorem is proved.
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