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A B S T R A C T  

In this paper we present a full proof of the result which was announced 
at the International Congress of Mathematicians in Kyoto (August, 1990): 
Any associative PIoalgebra over a field of characteristic p satisfies the stan- 
dard identity. 

THEOREM: Every associative PI-algebra over a field of characteristic p > 0 sat- 

isfies the identity 

(1) = o 

~ES(n) 

/'or some n where (S(n) is the symmetric group of  order n). 

In the sequel, we shall refer to (1) as the s y m m e t r i c  i d e n t i t y  of degree n. 

This theorem implies a positive answer for I.B. Volichenko's conjecture posed in 

1981: 

COROLLARY: Any  (associative) PI-algebra over a field o£ characteristic p > 0 

satisfies the standard identity of suitable degree. 

Indeed, let A be a PI-a lgebra  over a field of  characterist ic p > 0; G the Grass- 

man  algebra over F generated by the elements O,  e 2 , . . . ,  satisfying the relations 

* The final version of this paper was written while the author was visiting Bar-Ilan 
University. 
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eiej = e/ei for all i , j .  By Regev's tlmorem the algebra A ®F G is a PI-algebra; 

therefore, A ®F G will satisfy (1) for some n. Making in (1) the substitution 

Xi = ai @ e i ,  

where ai E A, we get the equality 

which implies 

@ e l ' ' ' e n  ~ 0,  

E ( - 1 ) a ~ ( D ' " a ~ ( " )  = 0 
aES(n) 

for all a l , . . . ,  an E A, i.e. the algebra A satisfies the standard identity of degree 

n .  

§1. Preliminaries 

Since the symmetric identities are multilinear, we may assume in the proof of 

the theorem that the basic field F is infinite with ch F = p > 0. Let B be the 

commutative algebra over F, generated by the elements bl, b2,. . ,  satisfying the 

relations 

(2) q = 0 ,  i =  1,2,.... 

LEMMA 1: An algebra A over an infinite field F satisfies the identity (1) i f  and 

only i f  the Mgebra A ® B satis/ies the identity x n = O. 

Proof." An arbitary element x E A ®F B can be written in the form 

x = E ai ® ci, 
i 

where ai E A, ci E B and the elements ci are the products of the bj. (2) implies 

2 = 0 for all i. Therefore x can be written as a linear combination of that c i 

elements of the form 

E ai~(1) . . .  ai~(.) ® c 
aeS(n) 

which equals 0, because the algebra A satisfies the identity (1). 
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The converse assertion is trivial becanse (1) is the full linearisation of the 

identity x"  = 0. | 

Since B is a commutat ive non-nilpotent algebra, the multilinear identities of 

the algebras A, A ®F B are the same. Thus the main theorem of the paper  

asserts that  any PI-algebra over a field of characteristic p > 0 satisfies the same 

multilinear identities as some nil-algebra of bounded index. 

LEMMA 2: If  an algebra A satisfies the symmetric identity then an algebra Mn( A ) 

also satisfies the symmetric identity of suitable degree. 

Proof: By Lemma 1 it is sufficent to prove that the algebra M , ( A  ® B) satisfies 

the identity x N = 0 for some N. 

Let x = ~ cijeij E M,,(A ® B), where cij E A @ B. By Lemma 1 A ® B is 

a nil-algebra of a bounded index; therefore, the subalgebra C generated by the 

elements c 0 will be nilpotent. Let N1 be the index of nilpotency of C; then 

x N' = 0. Thus taking N >_ N1 to be the index of nilpotency of an n2-generated 

free algebra of the variety Var(AQB),  the algebra M,,(A®B) satisfies the identity 

xN=O.  | 

LEMMA 3: An associative algebra satisfying the Engel identity 

(3) [x, y , . . . ,  y] = 0 

of degree m satisfies the symmetric identity of suitable degree. 

Proof: We may assume that m -- pk. It is easy to verify that for any A E F 

+ y)m = ym + y , . . . ,  y] + 

i.e. the identity (3) is a partial  linearization of the identity x m = 0. Therefore, 

by linearizing (3) we get an identity of the form (1). | 

LEMMA 4: Let I,~ A. If I and A/  I both satisfy symmetric identities, then A also 

satisfies a symmetric identity. 

Proof: By Lemma 1 the algebras I®B,  ( A / I ) Q B  satisfy the identities x n~ = O, 

x n2 = 0 respectively. Thus A ® B satisfies the identity x n~+'~2 = 0. | 
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§2. The  p r o o f  o f  the  ma in  t h e o r e m  

Since as any PI-algebra can be embedded into a PI-algebra with unit, it is suffi- 

cient to prove the main theorem for PI-algebras with unit. 

Let F(x) be the free associative algebra with unit generated by a countable set 

X, and let A be a PI-algebra with unit. Let F ,  denote the n-generated relatively 

free algebra of the variety Var(A) with unit. In [1] it was proved that there exist 

finite-dimensional classical algebras C~ such that 

(4) Var(F,) = Var(Cn). 

(A finite-dimensional algebra is called classical if C = P(C)  + Rad C, ~'(C) N 

Rad C = 0, and T'(C) is a direct product of full matrix algebras over the base 

field F.) We fix the finite-dimensional classical algebras satisfying (4). 

Remark: If for some n the algebra Cn satisfies an identity f ( x l , . . . , X m )  = O, 

where m < n, then the algebra A also satisfies this identity. 

Indeed, let F be the ideal of identities of the algebra A, F' the ideal of identities 

of the algebra Fn. Since m < n we have the inclusions 

f ( x l , . . . , x m )  E r' N F ( x l , . . . , x , )  : F n F ( z l , . . . , x n )  C_ r .  

If A is a proper variety of associative algebras over F, then we denote by a(¢4) 

the maximal integer a satisfying the condition M ~ ( F )  E ,,4. The number a(~t) is 

called the m a t r i x  complex i ty  o f  the  var ie ty  ,4. 

A nontrivial identity of the form 

Z Ot(i)Z il ylzi2y2 • • • zi"~ymZi'n+l = 0, 

(i) 

where a(i) E F, is said to be an identity of algebraic form of order m. We denote 

by fl(~,) the minimal order of an identity of the algebraic form is satisfied by all 

the algebras of ,4. If some algebra of .A does not satisfy any identity of algebraic 

form then we let fl(.A) = 00. 

The ordered pair (a(.A), ~(.A)) is called the t y p e  of  the  va r ie ty  .A. We order 

the types lexicographically: (a l , f l l )  <_ (a2,~2) if either al  < a2 or a l  = a2, 

_<~. 
We shall prove the theorem by induction on the type Vat(A). 
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1. BASE FOR TIlE INDUCTION. fl(Var(A)) = 1 

In this case the algebra A satisfies a nontrivial identity of the form 

~--~ o~k [y, z, . . . , z]z " -k .  
k=O 

Hence, since A is an algebra with unit, we obtain (substituting z + 1 for z and 

taking the nontrivial homogeneous component of minimal degree) that the al- 

gebra A satisfies an Engel identity. Then by Lemma 3 the algebra A satisfies a 

symmetric identity of suitable degree. 

2. INDUCTIVE HYPOTHESIS. 

Suppose that for every variety ,4 of type less than the type of the variety 

Vat(A) that all the algebras of ,4 satisfy a symmetric identity of suitable degree. 

3. Let a = a(Var(A)), fl = fl(Var(A)). We shall assume that fl > 1. 

The algebras Cn may be represented in a form 

Cn = P(Cn) + Rad Ca, 

where 7~(Cn) is the semisimple part of the algebra Ca, T'(Cn) N Rad Cn = 0. We 

have the decomposition 

= c(. °) • c(2 ) e - - .  • c 5  

where C (i) ~- Mc,(F)  if i > 0, and the algebra Cn (°) is a direct sum of the full 

matrix algebras M i ( F ) ,  j < a. 

Let e(n i) be the unit of the algebra C (0. We denote by In the ideal of the algebra 

Cn generated by all the elements of the form en(i)cen(i), where j # i, c E Ca. It is 

obvious that In C_ Rad Cn. 

Now we will prove that if there exists a natural number q such that for each 

n the algebra In satisfies the symmetric identity of degree q, then the algebra A 

satisfies a symmetric identity of suitable degree. 

We suppose first that a = 1. Consider the algebra Ca, where n --- 4q. The 

algebra Ca~In can be represented as a direct sum of local algebras, therefore it 

satisfies the identity 

g ( x , y , z , t )  = z [ x , y , . . . , y ] t  = o 

m 
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for some m. By Engel's theorem Cn satisifes the identity 

(5) E ga(1) ""ga(q) = 0  
dES(q) 

where gi = g(xi, yi, zi, ti). Since the left side of the identity (5) depends on 4q = n 

variables, by the remark the algebra A satisfies the identity (5). It follows that 

there exist an ideal I of the algebra A such that the algebra A / I  satisfies Engel's 

identity and the algebra I satisfies the symmetric identity of degree q. Applying 

Lemmas 3 and 4, we conclude that the algebra A satisfies a symmetric identity 

of suitable degree. 

We suppose now that a > 1. For each n the algebra C , / I n  can be represented 

as a direct sum of the algebras of the form 

C (i) = e ( i ) ~ ( i ) l r  N e (i)[? ~(i) 

If i > 0 then we have the isomorphism 

C(O ~ M~(7)(i)), 

where 7)(0 are suitable algebras. Consider 

C = M~(F(x) ) /F(M~(F(x) ) ) ,  

where F is the ideal of identities of the algebra A, and F(M~(F(x)))  is the 

ideal of M~,(F(x)) generated by all the elements of a form f ( a l , . . .  ,am) where 

f ( x l , . . . , x m )  E F, ai E M~(F(x)) .  It is obvious that for all n and i > 0 the 

algebra C(~ i) satisfies all the identities of the algebra C. 

We have C = M~(7)) for some algebra 7). Since C is a PI-algebra then 7) is also 

a PI-algebra. It is easy to see that a(Var(7))) = 1 < a. Thus by the inductive 

hypothesis the algebra 7) satisfies a symmetric identity of suitable degree. Then 

by Lemma 2 the algebra C also satisfies a symmetric identity of suitable degree 

m .  

So we have proved that there exists a natural number m such that for any n 

and any i > 0 the algebra C(~ i) satisfies a symmetric identity of degree m. 

We fix an arbitrary polynomial u ( x l , . . . , x r )  E F(x) satisfying the following 

properties: 

1. u = 0 is an identity of the algebras Mj(F)  for j < a; 
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2. for each k the algebra Ma(F)  does not satisfy the identity u k = 0. 

Let n = (m + r + 3)q. Since the algebra M j ( F )  for j < 2 satisfies the identity 

u = 0, then for some k the algebra C (°) satisfies the identity u k = 0. This and 

what was proved above imply that the algebra C , / I ,  satisfies the identity 

(6) 
z 

aES(rn) 

Then the algebra C ,  satisfies the identity 

(7) Z = o 
aES(g) 

where 

Since the left side of the identity (7) depends on (m + r + 3)q = n variables, then 

by the remark the algebra A also satisfies the identity (7). It follows that there 

exists an ideal I of the algebra A such that the algebra I satisfies a symmetric 

identity of degree q and the algebras A / I  satisfies the identity (6). 

Let .4 be the variety of algebras satisfying the identity u k = 0. By construction 

of the polynomial u we have the inequality a(.A) < a. Thus by the inductive 

hypothesis the algebras of the variety .4 satisfy a symmetric identity of suitable 

degree, i.e. the identity u k -- 0 implies a symmetric identity of suitable degree. 

Hence the identity (6) also implies a symmetric identity. Thus we have proved 

that the algebra A / I  satisfies a symmetric identity. Finally, applying Lemma 4 

we conclude that the algebra A satisfies a symmetric identity. 

4. We fix an arbitrary central polynomial h ( x l , . . . ,  xr) of the algebra M~. Let 

n = r + 2. Since the algebra C , / R a d  C,  satisfies the identity [h, y] = 0 and the 

ideal Rad Cn is nilpotent, the algebra C,, satisfies for some k every identity of 

the form 

(s) zmr[h (x , , . . . , x r ) , y ] z  m . . . .  zm2k[h(x , , . . . , x r ) , y]z  ~2k+' = 0 

where mi _> 0. The left side of this identity depends on r + 2 = n variables; 

therefore, by the remark the identity (8) holds in the algebra A and in the 

algebras C ,  for all n. 

In this part of the proof we get some generalized identities of Cn which will be 

needed later. 
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Suppose that the set of units {e (i), i > 1} contains 2k + 1 distinct ele- 

ments e l , . . .  ,e2k+l. Since h ( z l , . . .  ,x~) is a central polynomial of Ms(F) ,  for 

all ~1 , . . . ,  A2k+l • F we can choose the elements a l , . . .  , a t  • ~ ( C , )  such that 

2k+l 

h(al,...,ar) = E )~iei. 
i=1 

Make the following substitution in the identity (8) 

2k 

xi = ai; y = E eiYiei+l, Yi • Cn; z 1. 
i=1  

We obtain the equality 

2k 

H ( ~ i - -  ~ i + l ) e l Y l e 2 Y 2 . . . e 2 k Y 2 k e 2 k + l  

i=1  

= 0 .  

Since F is an infinite field, we can choose the elements Xi such that )~i ¢ )~j if 

i 7t j .  Thus for all distinct units e l , . . . , e2k+l  • {e (0 I i _> 1} the algebra Cn 

satisfies the generalized identity 

(9) e l Y l e 2 Y 2 " . e 2 k Y 2 k e 2 k + l  = 0 .  

Let e I be an arbitrary unit belonging to the set {e(,/) [ i >_ 0}, e2 = 1 - el. If 

el ¢ e(, °) then we can choose the elements ai • P(n)  such that h ( a l , . . . ,  a~) = el. 

If el = e(, °) the elements ai can be chosen so that h(a l , . . .  , a t )  = e2. Make the 

substitution into the identity (8): xi = ai, y = elye2, z = z, where y ,z  • C,.  

We obtain the generalized identity of the algebra C, ,  

(10) Z rnl e l y e 2  • • " Z m2k e lYe2  zrn2k+l = 0 

for all rni > O. 

5. Now we prove the following statement: 

If there ezists a natural number N such that for any n and i the algebra 

(i) T - (i) satisfies a symmetric identity of degree N, then for all n the algebra en nen  

In satisfies the symmetric identity 

(11) E Y~O)'"Ya(q)=O 
~eS(q) 
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where 

S T A N D A R D  I D E N T I T Y  IN C H A R A C T E R I S T I C  p 

q = ((2k)2(2k + 1) + 1)N + 1. 
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Indeed, since the identity (11) is multilinear then it is sufficient to verify the 

identity for the elements 

Yi = eklyietj,  

where ek,, et, E {e~ ) ] i > 0}, ej # ej, if j # j ' ,  Yi E In. 

It follows from the identity (9) that if the set 7r = {ek,, e t , , . . . ,  ek,, et, } contains 

more than 2k + 1 elements (i.e., if I~r O {el i) l i > 1}l > 2k + 1) then the left side 

of the identity (11) equals zero for the substitution we have made. 

An element yi is called mixed  if ki # ti. If the number of a mixed element is 

greater than (2k)2(2k + 1) then among the elements Yi there exist (2k + 1) mixed 

elements Yi l , . . .  ,Yi~,+l such that kiy = kit, ti i = til for all j = 1 ,2 , . . .  ,2k + 1. 

Then the left side of (11), for the substitution we have made, can be represented 

as a linear combination of expressions which are the linearizations of the left sides 

of the identities of the form (10), where el = eke1, e2 = 1 - el, i.e. the left side 

of (11) again equals zero. 

So we may assume that the number of the mixed elements < (2k)2(2k + 1). In 

the case the left side of the identity (12) for the substitution we have made can 

be represented as a linear combination of the expressions of the form 

(12) u F, 
a6.S(N) 

where Yij are nonmixed elements. The expression (12) equals zero because the 

nonmixed elements belong to the subalgebras (]~i>0 e(~)Ine('~) which satisfies the 

symmetric identity of degree N. The statement is proved. 

Let us continue the proof of the main theorem. Consider the variety A gen- 

(i)i e(i) where n 1,2, i 1,2, . , s (n) .  It erated by all the algebras e ,  , n , . . . .  , = .. 

remains to prove that all the algebras belonging to .A satisfy a symmetric iden- 

tity of suitable degree. 

Since A C_ Var A then a(.A) <_ a = a(Var(A)), /3(A) < /3 = /3(Var(A)); 

therefore, by the inductive hypothesis it is sufficient to prove that fl(.A) </3. 

6. We suppose first that /3 # o0. Then the algebra A satisfies a nontrivial 

identity of the form 

(13) E a ( i ) z i ' y l z i 2 y 2 "  " z i # - ' y # - l z i " y # z  ia+' = O. 

( i )=( i l  ..... i#) 
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We show tha t  for all u, i the a lgebra  et,~)I,e (i) satisfies the identi ty d m =  0, where 

g,n(Z, Y l , . . . ,  Ya--1) = o~(i)zi~y I . . .  z i~-~y f l_ lz i ,+l"  

(i) 
i#=m 

Indeed,  let el = e (/). It  follows f rom the definition of the ideal I ,  tha t  

e l i ,  el = elCne2Cnel, where e2 = 1 - e l .  

Make the following subs t i tu t ion  into the ident i ty (13): 

z = $e2 + d, where d E e l I ,  el, A E F ;  

y i = d i ,  w h e r e d i E e l I ,  el, i = 1 , . . . , / 3 - 2  

ya~ = cl ,  ya = c2, where cl E e lC ,  ez, c2 E e2C,,el. 

We get the result: 

.~mgm(d, d l , . . . ,  d#-2,  C1 C2) = 0. 
m 

Since F is an infinite field, the equali ty 

gin(d, d l , . . . ,  d~2C1C2 ) = 0 

follows for all m.  

An a rb i t ra ry  element  d~ - i  E el I ,  el can be represented as a l inear combina t ion  

of the d e m e n t s  of the form cc', where c E e lc , e2 ,  c' E e2C, el. Therefore  we get 

the equali ty 

gm(d, d l , . . . , d # - l )  = 0 

for all d, di E elCnel,  i.e. the  a lgebra  elInel satisfies the ident i ty  gm = O. 

Since the  ident i ty  (13) is nontrivial ,  then for some rn the ident i ty  g, ,  = 0 is a 

nontr ivial  ident i ty  of algebraic form of the order /3  - 1. Thus/3( .A) < /3 .  

7. We suppose  finally t h a t / 3  = c¢. We prove in tha t  case tha t  every a lgebra  

belonging to the var iety .4 satisfies some identi ty of  the  algebraic fo rm of order  

k (k is the same number  as in the formula  (8)), i.e. /3(.A) < k </3 .  

Let el = e(n/), e2 = 1 - e. Choose elements  a l , . . . , a r  E C ,  such tha t  ei ther 

h ( a l , . . . , a r )  = el or h ( a l , . . . , a r )  = e2 (ef. i t em 4). We make  the following 

subs t i tu t ion  into the ident i ty (8) for m2 = rn4 . . . . .  m2k = 0, m 2 i - 1  = hi: 

xi  = ai, y = y - 4 - Y ,  w h e r e  ~ E e lCne2 ,  ~1 E e2Cne l ,  z E e l C n e l .  If  m l  = 0 
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we multiply the result by el from the left. As a result we get the following 

generalized identity of Cn : 

(14) 

for every integer n i > 0 and any ~ E e lCn¢2 ,  y E e2C, el, z E cache2. 

Now we shall describe a process of transforming of generalized identities which 

is similar to the process of linearization. 

Suppose the polynomial f = f (y ,  z, Xl, .  • •, x~) is homogeneous with respect to 

y, degy f = / t  (the variable z may appear in the polynomial f vacuously). Then 

f can be written in the form 

f = ~ c*(~)ulyu2y.., uuyuj,+l ) 
(u) 

where ui are the words on the variables x l , . . . ,  xs, and a(~) E F. For any vector 

n = ( n l , . . . ,  n u) of non-negative integers, we define the polynomials 

(-) 

(~) 

Consider an associative algebra :D over the field F which contains fixed subsets 

My, Mz, M , ~ , . . . ,  M, ,  satisfying the properties: 

1. My is a linear F subspace. 

2. Either MzMy C My, or MyM~ C_ My. 

We assume that for any vector ~ = ( , q , . . . ,  nu) and for any elements y E My, 

z E M , ,  z, e M, ,  the following equality holds in D : g(~)  = 0, where g(~)  = l ( n )  

if M:My C_ My, g (n)  = r ( n )  if M y M ,  C_ My. 

Since My is a linear space over an infinite field F then for any yl, Y E My, 

z E M~, xi E M, ,  and for any integer vector n the following equality holds in 2); 

# 

(15) = 0, 
i----1 

where 

= " ' "  u,z" yU,+l) 
(u) 
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if g(~)  = e(~), 

gi(-'12 ) ~--- ~ O~(u)~lY znl "'" ~i - - lY  zni-I Ui zulylzni+' Ui4-1Y zni+lt ' . `  ttpY znstu.q-1) 
(,,) 

if g(~') = z(~'). This equality is a partial linearization of g(~)  with respect to y. 

We denote by ¢i the vector 

( 0 , . . . , 0 , 1 , 0 . . . 0 ) ,  

We substitute into the equality (15) yl = zJyl if MzMy C_ My, yl = ylz j if 

MyMz C_ My. We get the result 

p 

( 1 6 )  ~ gi( -~ W j-~i) = O, 

i=1 

which is true for all ~ , j .  

Consider the polynomial 

/t--1 

(17) h(Z) = 
/t 

~ gi(-~ "q- -'~j, "4-''' q- -~j~ -{- (# -- V)-'~i). 
z<_jl <...<j~ <_t, i=1 t,=0 

This polynomial is a linear combination of polynomials of type (16). Thus the 

equality h(~)  = 0 holds in :D for every 3.  

Changing the order of summation in (17) we obtain 

h(~)  = ~ hi(n'), 
i = l  

where 

# - 1  

g i ( -'n "4- -~ Jt "4-''' "1- -'~ j~, + (# -- 1,/ ) -'~ i ) . 

It is easy to see that h i (n)  is trivial for i _> 2. It is obvious also that if the 

initial polynomial f is nontrivial then the polynomial h i (n )  is nontrivial also. 

We let 

£~,y, ( f )  = h (0 ) .  
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Now we apply the described process for the case ~D = C.,  Mg = eaCne2, 

M~ = e2C,,el, Mz = eIC,,e~, f = (~0) k. By what was proved above for all 

Y, Yi E M~, fl, Oi E M~, z E Mz, the following equality holds in Cn. 

c~,~, ( c ~ , ~ _ ,  ( . . .  c~,~, (c~,rk( .  • • (c~,~, ( f ) . . . )  = 0. 

The left-hand side of this equality is a nontrivial polynomial of the form 

Z ]~(i)Zi' ~1 ~ll zi2Y2 ~12"'" g i~ ~klJk zit'+l • 
(i) 

In particular, this polynomial is linear with respect to the variables Yi, 0i. Since 

M~Mf~ = ellnel  it follows that the algebra elI,,el satisfies the identity 

(18) y~  f l( i)zil~hzi2y2 . . .  zilykgit'+' = 0 

(0 

which is a nontrivial identity of algebraic form of order k. Since the coefficients 

B(i) do not depend on n and el then all the algebras of the variety .4 satisfy the 

identity (18). The Theorem is proved. 
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