THE STANDARD IDENTITY IN CHARACTERISTIC p A CONJECTURE OF I.B. VOLICHENKO

BY

A. R. KEMER*

Department of Mathematics Moscow University--Ulyanovsk Branch, Ulyanovsk, Russia

ABSTRACT

In this paper we present a full proof of the result which was announced at the International Congress of Mathematicians in Kyoto (August, 1990): Any associative PI-algebra over a field of characteristic p satisfies the standard identity.

THEOREM: *Every associative PI-algebra over a field of characteristic p > 0 satisfies* the *identity*

(1)
$$
\sum_{\sigma \in S(n)} x_{\sigma(1)} \cdots x_{\sigma(n)} = 0
$$

for some *n* where $(S(n))$ is the symmetric group of order *n*).

In the sequel, we shall refer to (1) as the symmetric identity of degree n. This theorem implies a positive answer for I.B. Volichenko's conjecture posed in 1981:

COROLLARY: *Any (associative)* PI-algebra over a field of characteristic $p > 0$ satisfies *the standard identity of suitable* degree.

Indeed, let A be a PI-algebra over a field of characteristic $p > 0$; G the Grassman algebra over F generated by the elements e_1, e_2, \ldots , satisfying the relations

^{*} The final version of this paper was written while the author was visiting Bar-Ilan University. Received June 17, 1992

344 **A.R. KEMER Isr. J. Math.**

 $e_i e_j = e_i e_i$ for all *i, j.* By Regev's theorem the algebra $A \otimes_F G$ is a PI-algebra; therefore, $A \otimes_F G$ will satisfy (1) for some n. Making in (1) the substitution

$$
x_i = a_i \otimes e_i,
$$

where $a_i \in A$, we get the equality

$$
\left(\sum_{\sigma\in S(n)} (-1)^{\sigma} a_{\sigma(1)} \cdots a_{\sigma(n)}\right) \otimes e_1 \cdots e_n = 0,
$$

which implies

$$
\sum_{\sigma \in S(n)} (-1) a_{\sigma(1)} \cdots a_{\sigma(n)} = 0
$$

for all $a_1, \ldots, a_n \in A$, i.e. the algebra A satisfies the standard identity of degree n.

§1. Preliminaries

Since the symmetric identities are multilinear, we may assume in the proof of the theorem that the basic field F is infinite with ch $F = p > 0$. Let B be the commutative algebra over F, generated by the elements b_1, b_2, \ldots satisfying the relations

(2)
$$
b_i^2 = 0, \quad i = 1, 2, \ldots
$$

LEMMA 1: *An* algebra A over an *infinite field F satisfies the identity (1) if and only if the algebra* $A \otimes B$ *satisfies the identity* $x^n = 0$.

Proof: An arbitary element $x \in A \otimes_F B$ can be written in the form

$$
x=\sum_i a_i\otimes c_i,
$$

where $a_i \in A$, $c_i \in B$ and the elements c_i are the products of the b_j . (2) implies that $c_i^2 = 0$ for all i. Therefore x can be written as a linear combination of elements of the form

$$
\sum_{\sigma \in S(n)} a_{i_{\sigma(1)}} \dots a_{i_{\sigma(n)}} \otimes c
$$

which equals 0, because the algebra A satisfies the identity (1) .

The converse assertion is trivial becanse (1) is the full linearisation of the identity $x^n = 0$.

Since B is a commutative non-nilpotent algebra, the multilinear identities of the algebras A, $A \otimes_F B$ are the same. Thus the main theorem of the paper asserts that any PI-algebra over a field of characteristic $p > 0$ satisfies the same multilinear identities as some nil-algebra of bounded index.

LEMMA 2: If an algebra A satisfies the symmetric identity then an algebra $M_n(A)$ *also satisfies the symmetric identity of suitable degree.*

Proof: By Lemma 1 it is sufficent to prove that the algebra $M_n(A \otimes B)$ satisfies the identity $x^N = 0$ for some N.

Let $x = \sum c_{ij} e_{ij} \in M_n(A \otimes B)$, where $c_{ij} \in A \otimes B$. By Lemma 1 $A \otimes B$ is a nil-algebra of a bounded index; therefore, the subalgebra C generated by the elements c_{ij} will be nilpotent. Let N_1 be the index of nilpotency of C; then $x^{N_1} = 0$. Thus taking $N \geq N_1$ to be the index of nilpotency of an n^2 -generated free algebra of the variety $\text{Var}(A \otimes B)$, the algebra $M_n(A \otimes B)$ satisfies the identity $x^N=0.$ **i**

LEMMA 3: *An associative algebra satisfying the Engel identity*

$$
(3) \qquad [x, y, \ldots, y] = 0
$$

of degree m satisfies the symmetric identity of suitable degree.

Proof: We may assume that $m = p^k$. It is easy to verify that for any $\lambda \in F$

$$
(\lambda x + y)^m = y^m + \lambda [x, y, \dots, y] + \lambda^2 \varphi(x, y)
$$

i.e. the identity (3) is a partial linearization of the identity $x^m = 0$. Therefore, by linearizing (3) we get an identity of the form (1) .

LEMMA 4: Let $I \triangleleft A$. If I and A/I both satisfy symmetric identities, then A also *satisfies a symmetric identity.*

Proof: By Lemma 1 the algebras $I \otimes B$, $(A/I) \otimes B$ satisfy the identities $x^{n_1} = 0$, $x^{n_2} = 0$ respectively. Thus $A \otimes B$ satisfies the identity $x^{n_1+n_2} = 0$.

§2. The proof of the main theorem

Since as any PI-algebra can be embedded into a PI-algebra with unit, it is sufficient to prove the main theorem for PI-algebras with unit.

Let $F(x)$ be the free associative algebra with unit generated by a countable set X, and let A be a PI-algebra with unit. Let F_n denote the n-generated relatively free algebra of the variety $\text{Var}(A)$ with unit. In [1] it was proved that there exist finite-dimensional classical algebras C_n such that

$$
(4) \t\t Var(F_n) = Var(C_n).
$$

(A finite-dimensional algebra is called **classical** if $C = \mathcal{P}(C) + \text{Rad } C$, $\mathcal{P}(C) \cap C$ Rad $C = 0$, and $\mathcal{P}(C)$ is a direct product of full matrix algebras over the base field F .) We fix the finite-dimensional classical algebras satisfying (4) .

Remark: If for some *n* the algebra C_n satisfies an identity $f(x_1,...,x_m) = 0$, where $m \leq n$, then the algebra A also satisfies this identity.

Indeed, let Γ be the ideal of identities of the algebra A, Γ' the ideal of identities of the algebra F_n . Since $m \leq n$ we have the inclusions

$$
f(x_1,\ldots,x_m)\in\Gamma'\cap F\langle x_1,\ldots,x_n\rangle=\Gamma\cap F\langle x_1,\ldots,x_n\rangle\subseteq\Gamma.
$$

If A is a proper variety of associative algebras over F, then we denote by $\alpha(\mathcal{A})$ the maximal integer α satisfying the condition $M_{\alpha}(F) \in \mathcal{A}$. The number $\alpha(\mathcal{A})$ is called the matrix complexity of the variety A .

A nontrivial identity of the form

$$
\sum_{(i)} \alpha_{(i)} z^{i_1} y_1 z^{i_2} y_2 \cdots z^{i_m} y_m z^{i_{m+1}} = 0,
$$

where $\alpha_{(i)} \in F$, is said to be an identity of algebraic form of order m. We denote by $\beta(\mathcal{A})$ the minimal order of an identity of the algebraic form is satisfied by all the algebras of A . If some algebra of A does not satisfy any identity of algebraic form then we let $\beta(\mathcal{A}) = \infty$.

The ordered pair $(\alpha(\mathcal{A}), \beta(\mathcal{A}))$ is called the type of the variety A. We order the types lexicographically: $(\alpha_1, \beta_1) \leq (\alpha_2, \beta_2)$ if either $\alpha_1 < \alpha_2$ or $\alpha_1 = \alpha_2$, $\beta \leq \beta_2$.

We shall prove the theorem by induction on the type $\text{Var}(A)$.

1. BASE FOR THE INDUCTION. $\beta(\text{Var}(A)) = 1$ In this case the algebra A satisfies a nontrivial identity of the form

$$
\sum_{k=0}^n \alpha_k[y,z,\ldots,z]z^{n-k}.
$$

Hence, since A is an algebra with unit, we obtain (substituting $z + 1$ for z and taking the nontrivial homogeneous component of minimal degree) that the algebra A satisfies an Engel identity. Then by Lemma 3 the algebra A satisfies a symmetric identity of suitable degree.

2. INDUCTIVE HYPOTHESIS.

Suppose that for every variety A of type less than the type of the variety $Var(A)$ that all the algebras of A satisfy a symmetric identity of suitable degree.

3. Let $\alpha = \alpha(\text{Var}(A)), \ \beta = \beta(\text{Var}(A)).$ We shall assume that $\beta > 1$.

The algebras C_n may be represented in a form

$$
C_n = \mathcal{P}(C_n) + \mathrm{Rad}\; C_n,
$$

where $P(C_n)$ is the semisimple part of the algebra C_n , $P(C_n) \cap$ Rad $C_n = 0$. We have the decomposition

$$
\mathcal{P}(C_n) = C_n^{(0)} \oplus C_n^{(1)} \oplus \cdots \oplus C_n^{S(n)},
$$

where $C_n^{(i)} \simeq M_o(F)$ if $i > 0$, and the algebra $C_n^{(0)}$ is a direct sum of the full matrix algebras $M_i(F)$, $j < \alpha$.

Let $e_n^{(i)}$ be the unit of the algebra $C_n^{(i)}$. We denote by I_n the ideal of the algebra C_n generated by all the elements of the form $e_n^{(i)}ce_n^{(j)}$, where $j \neq i, c \in C_n$. It is obvious that $I_n \subseteq$ Rad C_n .

Now we will prove that if there exists a natural number q such that for each n the algebra I_n satisfies the symmetric identity of degree q, then the algebra A satisfies a symmetric identity of suitable degree.

We suppose first that $\alpha = 1$. Consider the algebra C_n , where $n = 4q$. The algebra C_n/I_n can be represented as a direct sum of local algebras, therefore it satisfies the identity

$$
g(x,y,z,t)=z[x,\underbrace{y,\ldots,y}_{m}]t=0
$$

for some m. By Engel's theorem C_n satisifes the identity

(5)
$$
\sum_{\sigma \in S(q)} g_{\sigma(1)} \cdots g_{\sigma(q)} = 0
$$

where $g_i = g(x_i, y_i, z_i, t_i)$. Since the left side of the identity (5) depends on $4q = n$ variables, by the remark the algebra A satisfies the identity (5) . It follows that there exist an ideal I of the algebra A such that the algebra *A/I* satisfies Engel's identity and the algebra I satisfies the symmetric identity of degree q . Applying Lemmas 3 and 4, we conclude that the algebra A satisfies a symmetric identity of suitable degree.

We suppose now that $\alpha > 1$. For each *n* the algebra C_n/I_n can be represented as a direct sum of the algebras of the form

$$
C_n^{(i)} = e_n^{(i)} C e_n^{(i)} / I_n \cap e_n^{(i)} C_n e_n^{(i)}.
$$

If $i > 0$ then we have the isomorphism

$$
C_n^{(i)} \simeq M_\alpha(\mathcal{D}_n^{(i)}),
$$

where $\mathcal{D}_n^{(i)}$ are suitable algebras. Consider

$$
C=M_{\alpha}(F\langle x\rangle)/\Gamma(M_{\alpha}(F\langle x\rangle)),
$$

where Γ is the ideal of identities of the algebra A, and $\Gamma(M_{\alpha}(F(x)))$ is the ideal of $M_{\alpha}(F(x))$ generated by all the elements of a form $f(a_1,..., a_m)$ where $f(x_1,...,x_m) \in \Gamma$, $a_i \in M_\alpha(F(x))$. It is obvious that for all n and $i > 0$ the algebra $C_n^{(i)}$ satisfies all the identities of the algebra C.

We have $C = M_{\alpha}(\mathcal{D})$ for some algebra \mathcal{D} . Since C is a PI-algebra then \mathcal{D} is also a PI-algebra. It is easy to see that $\alpha(\text{Var}(\mathcal{D})) = 1 < \alpha$. Thus by the inductive hypothesis the algebra $\mathcal D$ satisfies a symmetric identity of suitable degree. Then by Lemma 2 the algebra C also satisfies a symmetric identity of suitable degree m.

So we have proved that there exists a natural number m such that for any n and any $i > 0$ the algebra $C_n^{(i)}$ satisfies a symmetric identity of degree m.

We fix an arbitrary polynomial $u(x_1,...,x_r) \in F(x)$ satisfying the following properties:

1. $u = 0$ is an identity of the algebras $M_i(F)$ for $j < \alpha$;

2. for each k the algebra $M_{\alpha}(F)$ does not satisfy the identity $u^{k} = 0$.

Let $n = (m + r + 3)q$. Since the algebra $M_i(F)$ for $j < 2$ satisfies the identity $u = 0$, then for some k the algebra $C_n^{(0)}$ satisfies the identity $u^k = 0$. This and what was proved above imply that the algebra C_n/I_n satisfies the identity **(6)**

$$
g(z,t,v,x_1,\ldots,x_m,y_1,\ldots,y_r)=z\sum_{\sigma\in S(m)}x_{\sigma(1)}\cdots x_{\sigma(m)}t(u(y_1,\ldots,y_r)^k)v=0.
$$

Then the algebra C_n satisfies the identity

(7)
$$
\sum_{\sigma \in S(g)} g_{\sigma(1)} \cdots g_{\sigma(m)} = 0
$$

where

$$
g_i = g_i(z^{(i)}, t^{(i)}, v^{(i)}, x_1^{(i)}, \ldots, x_m^{(i)}, y_1^{(i)}, \ldots, y_r^{(i)}).
$$

Since the left side of the identity (7) depends on $(m+r+3)q = n$ variables, then by the remark the algebra A also satisfies the identity (7) . It follows that there exists an ideal I of the algebra A such that the algebra I satisfies a symmetric identity of degree q and the algebras A/I satisfies the identity (6).

Let A be the variety of algebras satisfying the identity $u^k = 0$. By construction of the polynomial u we have the inequality $\alpha(\mathcal{A}) < \alpha$. Thus by the inductive hypothesis the algebras of the variety $\mathcal A$ satisfy a symmetric identity of suitable degree, i.e. the identity $u^k = 0$ implies a symmetric identity of suitable degree. Hence the identity (6) also implies a symmetric identity. Thus we have proved that the algebra *A/I* satisfies a symmetric identity. Finally, applying Lemma 4 we conclude that the algebra A satisfies a symmetric identity.

4. We fix an arbitrary central polynomial $h(x_1,...,x_r)$ of the algebra M_α . Let $n = r + 2$. Since the algebra C_n/R ad C_n satisfies the identity $[h, y] = 0$ and the ideal Rad C_n is nilpotent, the algebra C_n satisfies for some k every identity of the form

(8)
$$
z^{m_r}[h(x_1,\ldots,x_r),y]z^{m_r}\cdots z^{m_{2k}}[h(x_1,\ldots,x_r),y]z^{m_{2k+1}}=0
$$

where $m_i \geq 0$. The left side of this identity depends on $r + 2 = n$ variables; therefore, by the remark the identity (8) holds in the algebra A and in the algebras C_n for all n.

In this part of the proof we get some generalized identities of C_n which will be needed later.

Suppose that the set of units $\{e_n^{(i)}, i \geq 1\}$ contains $2k + 1$ distinct elements e_1, \ldots, e_{2k+1} . Since $h(x_1, \ldots, x_r)$ is a central polynomial of $M_\alpha(F)$, for all $\lambda_1,\ldots,\lambda_{2k+1}\in F$ we can choose the elements $a_1,\ldots,a_r\in\mathcal{P}(C_n)$ such that

$$
h(a_1,\ldots,a_r)=\sum_{i=1}^{2k+1}\lambda_ie_i.
$$

Make the following substitution in the identity (8)

$$
x_i = a_i;
$$
 $y = \sum_{i=1}^{2k} e_i y_i e_{i+1}, y_i \in C_n;$ $z = 1.$

We obtain the equality

$$
\prod_{i=1}^{2k} (\lambda_i - \lambda_{i+1}) e_1 y_1 e_2 y_2 \cdots e_{2k} y_{2k} e_{2k+1} = 0.
$$

Since F is an infinite field, we can choose the elements λ_i such that $\lambda_i \neq \lambda_j$ if $i \neq j$. Thus for all distinct units $e_1,\ldots,e_{2k+1} \in \{e_n^{(i)} \mid i \geq 1\}$ the algebra C_n satisfies the generalized identity

$$
(9) \t\t\t e_1y_1e_2y_2\cdots e_{2k}y_{2k}e_{2k+1}=0.
$$

Let e_1 be an arbitrary unit belonging to the set $\{e_n^{(i)} \mid i \geq 0\}$, $e_2 = 1 - e_1$. If $e_1 \neq e_n^{(0)}$ then we can choose the elements $a_i \in \mathcal{P}(n)$ such that $h(a_1,\ldots,a_r) = e_1$. If $e_1 = e_n^{(0)}$ the elements a_i can be chosen so that $h(a_1, \ldots, a_r) = e_2$. Make the substitution into the identity (8): $x_i = a_i$, $y = e_1ye_2$, $z = z$, where $y, z \in C_n$. We obtain the generalized identity of the algebra C_n ,

$$
(10) \t zm1e1ye2...zm2ke1ye2zm2k+1 = 0
$$

for all $m_i \geq 0$.

5. Now we prove the following statement:

If there ezists a natural number N such that for any n and i the algebra $e_n^{(i)} I_n e_n^{(i)}$ satisfies a symmetric identity of degree N, then for all n the algebra *In satisfies the symmetric identity*

(11)
$$
\sum_{\sigma \in S(q)} y_{\sigma(1)} \cdots y_{\sigma(q)} = 0
$$

where

$$
q = ((2k)^2(2k+1)+1)N+1.
$$

Indeed, since the identity (11) is multilinear then it is sufficient to verify the identity for the elements

$$
y_i = e_{k_i} y_i e_{t_j},
$$

where $e_{k_i}, e_{t_i} \in \{e^{(i)}_n \mid i \geq 0\}, e_j \neq e_{j'}$ if $j \neq j', y_i \in I_n$.

It follows from the identity (9) that if the set $\pi = \{e_{k_1}, e_{t_1}, \ldots, e_{k_q}, e_{t_q}\}$ contains more than $2k + 1$ elements (i.e., if $|\pi \cap \{e_n^{(i)} \mid i \geq 1\}| \geq 2k + 1$) then the left side of the identity (11) equals zero for the substitution we have made.

An element y_i is called **mixed** if $k_i \neq t_i$. If the number of a mixed element is greater than $(2k)^2(2k+1)$ then among the elements y_i there exist $(2k+1)$ mixed elements $y_{i_1},..., y_{i_{2k+1}}$ such that $k_{i_k} = k_{i_1}, t_{i_j} = t_{i_1}$ for all $j = 1, 2,..., 2k + 1$. Then the left side of (11), for the substitution we have made, can be represented as a linear combination of expressions which are the linearizations of the left sides of the identities of the form (10), where $e_1 = e_{k_1}$, $e_2 = 1 - e_1$, i.e. the left side of (11) again equals zero.

So we may assume that the number of the mixed elements $\leq (2k)^2(2k+1)$. In the case the left side of the identity (12) for the substitution we have made can be represented as a linear combination of the expressions of the form

(12)
$$
u \sum_{\sigma \in S(N)} y_{i_{\sigma(1)}} \cdots y_{i_{\sigma(N)}} V,
$$

where y_i , are nonmixed elements. The expression (12) equals zero because the nonmixed elements belong to the subalgebras $\bigoplus_{i\geq 0}e_n^{(i)}I_ne_n^{(i)}$ which satisfies the symmetric identity of degree N. The statement is proved.

Let us continue the proof of the main theorem. Consider the variety A generated by all the algebras $e_n^{(i)} I_n e_n^{(i)}$, where $n = 1,2,\ldots, i = 1,2,\ldots, s(n)$. It remains to prove that all the algebras belonging to A satisfy a symmetric identity of suitable degree.

Since $A \subseteq \text{Var } A$ then $\alpha(A) \leq \alpha = \alpha(\text{Var}(A)), \beta(A) \leq \beta = \beta(\text{Var}(A));$ therefore, by the inductive hypothesis it is sufficient to prove that $\beta(\mathcal{A}) < \beta$.

6. We suppose first that $\beta \neq \infty$. Then the algebra A satisfies a nontrivial identity of the form

(13)
$$
\sum_{(i)=(i_1,\ldots,i_\beta)} \alpha_{(i)} z^{i_1} y_1 z^{i_2} y_2 \cdots z^{i_{\beta-1}} y_{\beta-1} z^{i_\beta} y_\beta z^{i_{\beta+1}} = 0.
$$

We show that for all u, i the algebra $e_n^{(i)} I_n e_n^{(i)}$ satisfies the identity $d_m = 0$, where

$$
g_m(z, y_1, \ldots, y_{\beta-1}) = \sum_{\substack{(i) \\ i_{\beta} = m}} \alpha_{(i)} z^{i_1} y_1 \cdots z^{i_{\beta-1}} y_{\beta-1} z^{i_{\beta}+1}.
$$

Indeed, let $e_1 = e_n^{(i)}$. It follows from the definition of the ideal I_n that

$$
e_1I_ne_1 = e_1C_ne_2C_ne_1
$$
, where $e_2 = 1 - e_1$.

Make the following substitution into the identity (13):

$$
z = \lambda e_2 + d, \text{ where } d \in e_1 I_n e_1, \quad \lambda \in F;
$$

\n
$$
y_i = d_i, \text{ where } d_i \in e_1 I_n e_1, \quad i = 1, ..., \beta - 2
$$

\n
$$
y_{\beta_1} = c_1, \quad y_{\beta} = c_2, \text{ where } c_1 \in e_1 C_n e_2, \quad c_2 \in e_2 C_n e_1.
$$

\nWe get the result:

$$
\sum_{m} \lambda^m g_m(d, d_1, \ldots, d_{\beta-2}, C_1 C_2) = 0.
$$

Since F is an infinite field, the equality

$$
g_m(d,d_1,\ldots,d_{\beta_2}C_1C_2)=0
$$

follows for all m.

An arbitrary element $d_{\beta-1} \in e_1 I_n e_1$ can be represented as a linear combination of the elements of the form cc' , where $c \in e_1 c_n e_2$, $c' \in e_2 C_n e_1$. Therefore we get the equality

$$
g_m(d,d_1,\ldots,d_{\beta-1})=0
$$

for all $d, d_i \in e_1 C_n e_1$, i.e. the algebra $e_1 I_n e_1$ satisfies the identity $g_m = 0$.

Since the identity (13) is nontrivial, then for some m the identity $g_m = 0$ is a nontrivial identity of algebraic form of the order $\beta - 1$. Thus $\beta(\mathcal{A}) < \beta$.

7. We suppose finally that $\beta = \infty$. We prove in that case that every algebra belonging to the variety A satisfies some identity of the algebraic form of order k (k is the same number as in the formula (8)), i.e. $\beta(\mathcal{A}) \leq k < \beta$.

Let $e_1 = e_n^{(i)}$, $e_2 = 1 - e$. Choose elements $a_1, \ldots, a_r \in C_n$ such that either $h(a_1,...,a_r) = e_1$ or $h(a_1,...,a_r) = e_2$ (cf. item 4). We make the following substitution into the identity (8) for $m_2 = m_4 = \cdots = m_{2k} = 0$, $m_{2i-1} = n_i$. $x_i = a_i, y = \overline{y} + \tilde{y}$, where $\overline{y} \in e_1C_ne_2$, $\tilde{y} \in e_2C_ne_1$, $z \in e_1C_ne_1$. If $m_1 = 0$ we multiply the result by e_1 from the left. As a result we get the following generalized identity of C_n :

$$
(14) \t\t\t zn1 \overline{y} \tilde{y} zn2 \overline{y} \tilde{y} zn3 \cdots \overline{y} \tilde{y} znk+1 = 0
$$

for every integer $n_i \geq 0$ and any $\overline{y} \in e_1C_ne_2$, $\tilde{y} \in e_2C_ne_1$, $z \in e_1C_ne_2$.

Now we shall describe a process of transforming of generalized identities which is similar to the process of linearization.

Suppose the polynomial $f = f(y, z, x_1, \ldots, x_s)$ is homogeneous with respect to y, deg_y $f = \mu$ (the variable z may appear in the polynomial f vacuously). Then f can be written in the form

$$
f = \sum_{(u)} \alpha_{(u)} u_1 y u_2 y \cdots u_{\mu} y u_{\mu+1}
$$

where u_i are the words on the variables x_1, \ldots, x_s , and $\alpha_{(u)} \in F$. For any vector $\vec{n} = (n_1, \ldots, n_\mu)$ of non-negative integers, we define the polynomials

$$
\ell(\vec{n}) = \sum_{(u)} \alpha_{(u)} u_1 z^{n_1} y u_2 z^{n_2} y \dots z^{n_\mu} y u_{\mu+1},
$$

$$
r(\vec{n}) = \sum_{(u)} \alpha_{(u)} u_1 y z^{n_1} u_2 y z^{n_2} \dots y z^{n_\mu} y u_{\mu+1}.
$$

Consider an associative algebra $\mathcal D$ over the field F which contains fixed subsets $M_y, M_z, M_{x_1}, \ldots, M_{x_s}$ satisfying the properties:

1. M_y is a linear F subspace.

2. Either $M_z M_y \subseteq M_y$, or $M_y M_z \subseteq M_y$.

We assume that for any vector $\vec{n} = (n_1, \ldots, n_\mu)$ and for any elements $y \in M_y$, $z \in M_z$, $x_i \in M_{x_i}$ the following equality holds in $\mathcal{D}: g(\vec{n}) = 0$, where $g(\vec{n}) = \ell(\vec{n})$ if $M_z M_y \subseteq M_y$, $g(\vec{n}) = r(\vec{n})$ if $M_y M_z \subseteq M_y$.

Since M_y is a linear space over an infinite field F then for any $y_1, y \in M_y$, $z \in M_z$, $x_i \in M_{x_i}$ and for any integer vector \overline{n} the following equality holds in \mathcal{D} ;

(15)
$$
\sum_{i=1}^{\mu} g_i(\vec{n}) = 0,
$$

where

$$
g_i(\vec{n}) = \sum_{(u)} \alpha_{(u)} u_1 z^{n_1} y \cdots u_{i-1} z^{n_{i-1}} y u_i z^{u_i} y_1 u_{i+1} z^{n_{i+1}} y \cdots u_{\mu} z^{n_{\mu}} y u_{\mu+1})
$$

if
$$
g(\vec{n}) = \ell(\vec{n})
$$
,
\n
$$
g_i(\vec{n}) = \sum_{(u)} \alpha_{(u)} u_1 y z^{n_1} \cdots u_{i-1} y z^{n_{i-1}} u_i z^{u_i} y_1 z^{n_{i+1}} u_{i+1} y z^{n_{i+1}} t \cdots u_{\mu} y z^{n_{\mu}} u_{\mu+1})
$$

if $g(\vec{n}) = z(\vec{n})$. This equality is a partial linearization of $g(\vec{n})$ with respect to y. We denote by ε_i the vector

$$
\binom{0,\ldots,0,1,0\ldots0}{i}
$$

We substitute into the equality (15) $y_1 = z^j y_1$ if $M_z M_y \subseteq M_y$, $y_1 = y_1 z^j$ if $M_y M_z \subseteq M_y$. We get the result

(16)
$$
\sum_{i=1}^{\mu} g_i(\vec{n} + j\vec{\varepsilon}_i) = 0,
$$

which is true for all \vec{n},j .

Consider the polynomial

$$
(17) \quad h(\vec{n}) = \sum_{\nu=0}^{\mu-1} (-1)^{\nu} \sum_{z \leq j_1 < \cdots < j_{\nu} \leq \mu} \sum_{i=1}^{\mu} g_i(\vec{n} + \vec{\varepsilon}_{j_1} + \cdots + \vec{\varepsilon}_{j_{\nu}} + (\mu - \nu)\vec{\varepsilon}_i).
$$

This polynomial is a linear combination of polynomials of type (16). Thus the equality $h(\vec{n}) = 0$ holds in $\mathcal D$ for every \vec{n} .

Changing the order of summation in (17) we obtain

$$
h(\vec{n}) = \sum_{i=1}^{u} h_i(\vec{n}),
$$

where

$$
h_i(\vec{n}) = \sum_{\nu=0}^{\mu-1} (-1)^{\nu} \sum_{z \leq j_1 < \cdots < j_{\nu} \leq \mu} g_i(\vec{n} + \vec{\varepsilon}_{j_1} + \cdots + \vec{\varepsilon}_{j_{\nu}} + (\mu - \nu)\vec{\varepsilon}_i).
$$

It is easy to see that $h_i(\vec{n})$ is trivial for $i \geq 2$. It is obvious also that if the initial polynomial f is nontrivial then the polynomial $h_1(\vec{n})$ is nontrivial also.

We let

$$
\mathcal{L}_{y,y_1}(f)=h(0).
$$

Now we apply the described process for the case $\mathcal{D} = C_n$, $M_{\overline{y}} = e_1C_n e_2$, $M_{\tilde{y}} = e_2 C_n e_1$, $M_z = e_1 C_n e_1$, $f = (\overline{y}\tilde{y})^k$. By what was proved above for all $\overline{y}, \overline{y}_i \in M_{\overline{y}}, \tilde{y}, \tilde{y}_i \in M_{\tilde{y}}, z \in M_z$, the following equality holds in C_n .

$$
\mathcal{L}_{\tilde{y},\tilde{y}_k}(\mathcal{L}_{\tilde{y},\tilde{y}_{k-1}}(\ldots \mathcal{L}_{\tilde{y},\tilde{y}_1}(\mathcal{L}_{\overline{y},\overline{y}_k}(\ldots (\mathcal{L}_{\overline{y},\overline{y}_1}(f)\ldots)=0.
$$

The left-hand side of this equality is a nontrivial polynomial of the form

$$
\sum_{(i)} \beta_{(i)} z^{i_1} \overline{y}_1 \tilde{y}_1 z^{i_2} \overline{y}_2 \tilde{y}_2 \cdots z^{i_k} \overline{y}_k \tilde{y}_k z^{i_{k+1}}.
$$

In particular, this polynomial is linear with respect to the variables \overline{y}_i , \tilde{y}_i . Since $M_{\overline{y}}M_{\overline{y}} = e_1I_ne_1$ it follows that the algebra $e_1I_ne_1$ satisfies the identity

(18)
$$
\sum_{(i)} \beta_{(i)} z^{i_1} y_1 z^{i_2} y_2 \cdots z^{i_i} y_k z^{i_{k+1}} = 0
$$

which is a nontrivial identity of algebraic form of order k . Since the coefficients $\beta_{(i)}$ do not depend on n and e_i then all the algebras of the variety A satisfy the identity (18). The Theorem is proved.

References

[1] A.R. Kemer, *Identities of the finitely-generated algebras* over *infinite field,* Izvestia Academii Nauk SSSR Seria Mat. 54, No. 4 (1990), 726-753 (in Russian; translated in Math. Isvestia).